A Partial Nonlinear Extension of Lax-Richtmyer Approximation Theory
نویسندگان
چکیده
A partial nonlinear extension of Lax-Richtmyer approximation theory by Aradhana Kumari Adviser: Professor Dennis Sullivan Lax and Richtmyer developed a theory of algorithms for linear initial value problems that guarantees, under certain circumstances, the convergence to numerical solution of initial value problem. The assumptions are first that the difference equations (algorithms) approximate the differential equations under study (this is called consistency) and, secondly, that the initial value problem be well-posed (which means that the solutions exist, are unique and depend continuously on initial data). Under these assumptions the stability condition (which requires that errors in the algorithm do not accumulate nor increase as one iterates the algorithm) is necessary and sufficient for convergence in a certain uniform sense for arbitrary initial data. In this work we will extend certain aspects of their work to the nonlinear context. We drop the PDE and the well-posedness assumptions at first and add the ”β−axioms” that will guarantee convergence [ Theorems 2 and 3 ] of algorithm orbits in a projective limit of finite dimensional spaces. A conjecture for a partial converse that some stability is a consequence of convergence for a natural class of nonlinear algorithms where the deviation of these non-linear algorithms from being linear is itself a bilinear map. When the algorithms satisfy consistency with a PDE initial value problem we obtain the definition of a new kind of numerical solution and their existence [Theorem 6] given said algorithms.
منابع مشابه
Quantitative Theory of Richtmyer-meshkov Instability in Three Dimensions
A material interface between two fluids of different density accelerated by a shock wave is unstable. This instability is known as Richtmyer-Meshkov (RM) instability. Previous theoretical and numerical studies primarily focused on fluids in two dimensions. In this paper, we present the studies of RichtmyerMeshkov instability in three dimensions in rectangular coordinates. There are three main r...
متن کاملConsistency & Numerical Smoothing ⇒ Error Estimation — An Alternative of the Lax - Richtmyer Theorem
We all know Lax-Richtmyer Theorem: Assuming consistency, convergence is equivalent to numerical stability. However, it is in practice very difficult to verify the numerical stability of a scheme while solving an evolution equation, especially if the equation is nonlinear and/or the scheme is complex. Consequently, a large gap exists between error analysis theory and numerical computation practi...
متن کاملNonliner Theory of Unstable Fluid Mixing Driven by Shock Wave
A shock driven material interface between two fluids of different density is unstable. This instability is known as Richtmyer-Meshkov (RM) instability. In this paper, we present a quantitative nonlinear theory of compressible Richtmyer-Meshkov instability in two dimensions. Our nonlinear theory contains no free parameter and provides analytical predictions for the overall growth rate, as well a...
متن کاملFractional Partial Differential Equations with Boundary Conditions
We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posedness of the associated Cauchy problems in C0(Ω) and L1(Ω). In order to do so we develop a new method of embedding finite state Markov processes into F...
متن کاملExtensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017